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This article describes a software package developed to simulate the performance of the
byte-oriented Viterbi decoding algorithm for unit-memory (UM) codes on both 3-bit and
4-bit quantized AWGN channels. The simulation was shown to require negligible memory
and less time than that for the RTMBEP algorithm, although they both provide similar
performance in terms of symbol-error probability. This makes it possible to compute the
symbol-error probability of large codes and to determine the signal-to-noise ratio required
to achieve a bit error rate (BER) of 10~9 for corresponding concatenated systems. A
(7, 10/48) UM code, 10-bit Reed-Solomon code combination was found to achieve the
required BER at 1.08 dB for a 3-bit quantized channel and at 0.91 dB for a 4-bit quan-

tized channel,

l. Introduction

A general (I, ky/ny) unit-memory (UM) convolutional
encoder is shown in Fig. 1. Let a, be the k,-bit byte of input
to be encoded at time ¢, 8,_; be the [ -bit byte of delayed
input, and b, be the corresponding n,-bit byte of encoded
output. Let G, and G, be encoding matrices with dimensions
ko, X ny and Iy X ng respectively, then the encoding equation
may be written as

b, =a,G, +3_, G

t 191 t=12,

There are two different decoding algorithms that exhibit
similar performance: the RTMBEP and the byte-oriented

Viterbi. The RTMBEP decoding rule, which has been pre-
viously simulated (Ref. 1), has as its estimate a? the value of
a, that maximizes P(a,|r[; ,. A1) where r[l, ¢ + A] is the
observed sequence with delay A. To speed up the simulation,
we set up probability matrices P(r,,;|b,.,), where i = 0,
1, » - -, A. As a result, the required memory is at least
(A + 1)2%o** 0, which is quite large for big codes. For exam-
ple, for I =9, k, = 10, and A = §, at least 4,718,592 real
numbers are needed. On the other hand, the simulation for
the byte-oriented Viterbi decoding algorithm requires prac-
tically no memory (too small to count) since it does not have
to store the matrix P(r,|b,). Furthermore, the Viterbi algo-
rithm itself is much simpler and hence runs faster than the
RTMBEP algorithm,
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ll. Byte-Oriented Viterbi Decoding Algorithm
The byte-oriented Viterbi decoding rule chooses its estimated sequence a9, a3,  + -, a? to be the value of a,, a,, * + , a;, which
maximizes '
» ~P(rl,---,rI]al,--',aI)P(al,--',aI)
@, -, al S 1) Pa, 1)

Here we assume that all information sequences are equally likely (i.e., P(a,) = 27%0) 5o that the algorithm is the same as
maximizing

Plr, -l »ay)
or

P(r17 .’rjlbls"' bl(]_". a]))

A recursive method is developed as follows. Let a, =q,, 'ﬁt where the comma denotes concatenation of (k, ~ [;)-bit byte @, with
I,-bit byte . ﬁt is called the state at time ¢ since it affects the output at time # + 1. Let

Za) _ ~ ”~
f@,_ ) = max P(r,, -,rt_llal,---,a,_l,a,_l)
31,"',ﬂt_1
Then
o~ - v e s .« e d g
f(at) - ’\I;naxh ~ P(l’l, artl al’ at-—-l’ - 1>at5 at)
al""’ at_l)ﬂt_l!lt
= e [y Iy w i >
= max P(rtlrl, I3, ,at_l,at_l,at,at)

;..N
Bpr " Bplyr Bhlyr 8y
~ ”~ ~ o~
XP(r,, v, la, % .8 ,9,3)

Since the code has unit memory we can write

f@,) = _max_ P(r,|3,_,, a,4) max Pl ,---,r,_la, ,2_ .3 )
-1 8¢ dp Ay
= max P(r,b,@,_;,a,,3,))f(@,_ )

A1 3
The process can be described by a trellis diagram (Fig. 2). At (b) Set up 3-bit quantized AWGN channel probability
time ¢ we have to compute and store the metric at each state matrix.
(i.e., f(@,)). Also, we need to store the corresponding optimal
path leading to that state. The performance simulation soft- (c) Set
ware package for the byte-oriented Viterbi decoding algorithm
is summarized as follows: R

f(iio =0) =1 andf(ao #0)=0

(1) Initialization (¢ = 0)
(a) Set up coder matrix that gives b, for each a, and
a IERR(%TO) =0

a_,-
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Note that since we are interested just in symbol
error probability, in the simulation we need to
store only the accumulated number of errors of
the optimal path that leads to a particular state
(i.e., IERR (&,)).

(2) At time ¢ (main loop;¢=1,2," "), the following steps
are taken:

(a) Simulate current observed byte r .
(b) For each state @, compute

f@) = max
”~ ~
2, T,

P(r,|b, (&_,,7,8)f@E,_,)

and count the corresponding number of errors
IERR (@,). Since f(&,) will be very small after
many iterations, it is necessary to normalize it:

f@) = F@)IF(0)
(3) Finally, the estimate a?, ag, v ,a}) is chosen to be the
path that leads to the state @ such that

@) = f@,), foralld)s

with its corresponding number of errors IERR (’ﬁ?).

Ill. Performance

The above simulation software package requires little mem-
ory (in the order of 2¥0) compared to the one for RTMBEP al-
gorithm (in the order of 2%0*%0), This occurs since in the
RTMBEP algorithm we need to store the probability matrices
P(r,.;1b,,,) where i =0,1,---,Aso0 that not all of these
have to be recalculated in the next iteration. Even so, the
RTMBEP algorithm is still slower due to complicated recursive

procedures (see Ref. 1). The Viterbi decoder runs about four
times faster for small codes (k, = 4) and about twice as fast
for big codes (k, = 9). Amazingly enough, with all these ad-
vantages, the Viterbi algorithm still achieves similar perfor-
mance. For comparison, results based on 8000-byte decoding
simulation are shown in Table 1 for a (4,4/8) code and a
(6,6/30) code. The Viterbi algorithm simulation is run for a
(6,9/36) code and a (7,10/48) code found by Pil Lee. The
symbol-error probabilities based on 4000-byte decoding simu-
lation for the (6,9/36) code and 2000-byte decoding simula-
tion for the (7,10/48) code are given in Table 2 and plotted
in Fig. 3 for both 3-bit and 4-bit quantized AWGN channels
(see the Appendix). These codes are concatenated with various
matching symbol-size Reed-Solomon codes. The required
E /Ny (ie., outer code signal-to-noise ratio) to achieve a
bit-error-rate (BER) of 1079 is shown in Table 3 and plotted
in Fig. 4. With 4-bit channel output quantization, the
(7,10/48) unit-memory code, (1023, 927) Reed-Solomon code
combination requires only 0.91 dB in £,/N,. This represents
an improvement of 1.62 dB over the proposed NASA standard
(i.e., (7,1/2) convolutional code, (255,223) Reed-Solomon
code combination).

IV. Conclusion

A software package was developed to simulate the per-
formance of the byte-oriented Viterbi decoding algorithm for
unit-memory codes. This simulation requires negligible mem-
ory compared to that for the RTMBEP algorithm, It also runs
faster because of its simplicity. As a result, it is possible to
determine the symbol-error probability for large byte-oriented
codes. Then the required E,/N, to achieve a BER of 1076 can
be evaluated for concatenated systems. A (7,10/48) code,
(1023,927) Reed-Solomon code combination is found to
achieve the required BER at 0.91 dB, which is a 1.62-dB im-
provement over the proposed NASA standard.
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Table 1. Performance comparison between Viterbi and RTMBEP decoding algorithms

Code G 0 G1 Viterbi decoding RTMBEP decoding
4,4/8) 87 8B Ez;/No (dB) 1.5 2.0 2.5 15"b/N0 (dB) 1.5 2.0 2.5
4B E2 Ps 0.0313 0.0157 0.0063 Ps 0.0317 0.0154 0.0065
2D B8
1E D1
(6,6/30) 20FBACIC 0F14B4C1 E’b/N0 (dB) 0.75 1.00 1.25 E’b/No @B) 0.75 1.00 1.25
107DD60E 1E296982 P 0.0252  0.0122 0.0077 P 0.0246 0.0125 0.0079
08BEE307 3C52C344 s
04DD71A3 39A19688
02EEBOF1 33472D10
01F75878 278A5A60
Table 2. Simulated symbol-error probability for a (6, 9/36) code and a (7, 10/48) code—Viterbi
decoding
Code Gy G, Symbol-error probability, P
(6,9/36) FFFFF0000 C144DAA24 o /No (dB) 0.3 0.5 0.7
FFCOOFFE(Q 92168221E 4-bit channel  0.0765 0.0567 0.0328
F83EOFC1F 973860692 3-bit channel  0.0841 0.0605 0.0446
E4210C3D8 072155018
07398B018 60AS0EACA
D71062816 7008D69B1
909EC4234
6064DA924
6A0956DBO
(7,10/48)  FFFFFFF00000 AA84C7DO0SC3B E’ /N0 (dB) 0.0 0.25  0.50
FFFCOO0OFFFCO  A4DF8474F71D 4-bit channel  0.0850 0.0460 0.0245
FEO3FS80FEO3F Cl11A5A2916B4 3-bit channel  0.0965 0.0590 0.0380
C183870E183C  A65295EC8A17
3D7B44C9DF22 DE156BCAEA0B
BAE2B7AFB4FB 7EE41D2591E3
415CF745D496  486C6ECAD964
3846FE7B6C28
B101CDES5S(0AB4
73F328165182
Table 3. Required Eb/No to achieve a BER of 10°°
Code (6,9/36) (7,10/48)
R-S 399 415 431 447 831 863 895 927
code rate 511 511 511 511 1023 1023 1023 1023
Required P 0.06214 0.05080 0.03986 0.02942 0.06143 0.04914 0.03722 0.02580
Required  }3-bit 0.482 0.618 0.77 0.987 0.23 - 0.354 0.512 0.716
E'b/No (dB) }4-bit 0.557 0.65 0.724 0.222 0.335 0.482
Required ) 3-bit 1.56 1.52 1.51 1.57 1.13 1.0y 1.09 1.14
Eb/N0 (dB) }4-bit’ 1.46 1.39 1.31 0.96 0.92 0.91
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Fig. 1. A general (lo, kolno) unit-memory convolutional encoder
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Fig. 2, Trellis diagram: (a) byte-oriented Viterbi decoding algorithm; {(b) optimal path tracing
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Appendix
4-bit vs 3-bit Channel Output Quantization

The quantization of the output to one of J levels simply
transforms the AWGN channel to a finite-input, finite-output
alphabet channel (Ref. A-1). For our case, a biphase modu-
lated AWGN channel with output quantized to eight levels
(3-bit quantizer) is shown in Fig. A-1. The channel condi-
tional probabilities can be computed as follows:

P(110) = Q(3a-x)
P(M|0) = Q((4-Mu-x) - Q((5~Mu-x);  M=2,---,7
P(810) = 1 - Q(-3a-x)

PM|1) = P(9- M|0)

where
a = quantizer step size
x = 2E /N,

The quantizer step size is chosen to maximize the Bhatta-
charyya distance:

8
d =-In Z VPMI0) P(M| 1)
M=1

From this, the channel cutoff rate R j can be easily computed:

2
R, = max {— In Z [Z Q(x)\/m] }

q y

q

= max {— In E Z q(x) q(x") E \/P(ylx)P(ny')}
x x' y

For binary input, this becomes

=

The 4-bit quantized channel model is shown in Fig. A-2
with the channel conditional probabilities given by

P(L10) = Q(7a- x)
P(MI0) = Q((8-M)a-x) - QO-Ma-x); M =215
P(16]0) = 1- Q(-7a- x)

P(M|1) = P(17- M|0)

where the quantizer step size # is chosen to maximize

16
d=-ln Y /PMMI0)P(MIT)
M=1

The cutoff rate is plotted for beth channels over the interested
range of £ /N, in Fig. A-3. We see that, to achieve the same
.cutoff rate, we can save approximately 0.11 dB (in the range
around E /N, = -6 dB) in required signal-to-noise ratio by
using a 4-bit quantizer instead of a 3-bit quantizer. This fact
was originally suggested by Pil Lee (personal communication),

Reference

A-1. Viterbi, A. J., and J. K. Omura, Principles of Digital Communication and Coding,
pp. 78-82, McGraw-Hill, New York, N.Y., 1979.

106




(@)

r(t) = " 2ES/T cos wyt + n(t)

)

UNIFORM

N

I

2/ T cos wgt

{b)

]::-ES_.
NN

P(16]1)
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Fig. A-1. 3-bit quantized demodulator and channel mode!: (a) demodylator for BPSK signals;
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